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ABsTRACT. In this paper we present a hierarchy of algebraic structures developed in the
ACL2 Theorem Prover. This question had not been undertaken in this system up to now.
A methodology and a bunch of tools to handle the structures and morphisms included in
our hierarchy have been designed. In order to ensure the applicability of our methodology
and tools, a major issue when developing formal proofs, we have proved some results
coming from Universal Algebra.

INTRODUCTION

Proof Assistant tools are nowadays mature enough to tackle non-trivial mathematical
problems; we can cite, among others, the formalizations of the Four Color Theorem [5], the
Fundamental Theorem of algebra [4] or the Kepler conjecture [13].

The choice of a convenient representation for algebraic structures has been a cornerstone
of all these projects. As a result of that, several algebraic hierarchies have been developed
in Proof Assistant tools like C0oQ, Isabelle or Hol. However, as far as we know, this question
had not been undertaken in ACL2 [10], a theorem prover designed to verify properties of
code written in the programming language Common Lisp [6].

In this paper we present an ACL2 algebraic hierarchy which allows one to create theories
about usual mathematical structures (the hierarchy ranges from setoids to R-modules in-
cluding structures such as groups or rings) and morphisms between those structures. This
ACL2 hierarchy is not only an end, but also a means to achieve our final goal of verify-
ing actual code of the Kenzo Computer Algebra system [3]. To test the suitability of our
framework, we present how to use it to prove a result from Universal Algebra.

1. AN ALGEBRAIC HIERARCHY IN ACL2

The hierarchy of mathematical structures and morphisms depicted in Figure 1 has been
developed in ACL2, a preliminary approach was presented in [7]. In the left side of Figure 1,
there are the mathematical structures of our hierarchy, ranging from setoids to R-modules.
A detailed description of each one of these structures can be seen in [2].

A continuous arrow with an open triangle represents an inheritance relationship modeling
that the source mathematical structure is-a target mathematical structure. Whereas a
continuous arrow with a normal tip describes a use relationship in the sense that the target
mathematical structure is used to define the source one.

The morphisms included in our hierarchy are presented in the right side of Figure 1. It is
worth noting that a morphism always consists of a source structure, A of type T, a target
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FIGURE 1. Hierarchy of mathematical structures and morphisms

structure, B of type T, and a map f : A — B. Therefore, a morphism can be seen as
a template, using UML terminology, which is parameterized by a mathematical structure
T. An actual morphism is produced by binding the parameter T to one of the concrete
mathematical structures of our hierarchy. This is the meaning of the dashed arrows in our
diagram. As a final remark, the two continuous arrows between a T-morphism and the T
structure describe, as in the case of mathematical structures, a use relationship with role.
Namely, one T-structure plays the role of the source in the definition of the T-morphism
and the other one the role of the target.

2. APPLICATION: UNIVERSAL ALGEBRA

We have defined several tools to make the use of the mathematical structures and mor-
phisms of our hierarchy easier in ACL2. Namely, for every element of our hierarchy, our
tools allow us to: represent it, certify that an object fulfills the definitional axioms which
characterize it, and generate generic theories about it.

Let us present their use by means of a result coming from Universal Algebra [2], the
Subalgebra criterion. This criterion says that given X = (X, o0p1,...,0py), a T-structure
where X is the underlying set of X and opq, ..., op, are the operations defined on X; and
Y, a subset of X closed with respect to opi,...,0p,; then Y = (Y, o0p1,...,0p,) is also a
T-structure. This result has been proved for all the structures of our hierarchy, let us present
the proof for the simplest one: setoids.
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A setoid X = (X, ~x) is a set X together with an equivalence relation ~x on it. Then,
a setoid can be represented by means of two functions: the characteristic function of the
underlying set, the invariant, and a binary function encoding the equivalence relation. This
is carried out in ACL2 by means of a record, implemented with the defstructure macro [1],
with two fields (inv and eq) which store respectively the names of the invariant function and
the intended equivalence relation (in addition, these functions must have been introduced
previously). The following defstructure construction is used to define the setoid structure.

Now, we can create concrete setoids using this representation; for instance, the setoid
whose underlying set is the set of integer numbers (this invariant function is encoded in
ACL2 with the integerp function) having the same absolute value (encoded with eq-abs)
can be assigned to an ACL2 constant, called *Zabs*, as follows.

As the Subalgebra criterion is a universal property; the definition of a generic setoid
is necessary. In the case of setoids this task is carried out by means of a macro called
defgeneric-setoid. This macro takes as argument a symbol, for instance X, and produces,
on the one hand, the constant *X* which stores a generic setoid (whose components are
X-inv, the invariant function, and X-eq, the intended equivalence relation); and, on the other
hand, the theorem *X*-is-a-setoid which ensures that *X* satisfies the setoid axioms.

From this generic setoid, we can define a generic subset Y of X using the encapsulate
principle [9], an ACL2 mechanism to introduce functions only assuming some properties
about them.

(encapsulate
(((Y-inv *) => %))

(defthm Y-subset-of-X
(implies (Y-inv x) (X-inv x)))

Now, we can build a setoid instance where Y-inv is the invariant function and X-eq is
the equivalence relation; and store it in the constant *Yx.

Eventually, we can certify that *Y# is really a setoid using the tool defined for this purpose,
called check-setoid-p.

The above macro expands into a call of defthm whose name is *Y*-is-a-setoid. This
event states the setoid definitional axioms for the components of *Y#*. In this way, we have
proved the Subalgebra criterion for setoids; and this result can be instantiated for concrete
setoids as the one defined previously.
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It is worth noting that, in this case, ACL2 is able to prove the theorem *Y*-is-a-setoid
without any external help; but, in several cases (as usual in ACL2), the user must provide
some guidance to the system introducing some auxiliary lemmas.

3. CONCLUSIONS AND FURTHER WORK

We have presented the first hierarchy of algebraic structures in ACL2. The different
tools that we have devised facilitate the development of theories about the structures and
morphisms of the hierarchy. Moreover, the hierarchy is flexible enough to be extended
without any special hindrance.

In the future, we would like to use the present work as a basis to tackle complex formaliza-
tions. Namely, an appealing problem is the development of an ACL2 fully certified version
of a portion of the Kenzo Computer Algebra system, a successful tool devoted to Algebraic
Topology written in the same language in which ACL2 is built on. In particular, that new
formally verified Computer Algebra system should include the minimal Kenzo functionality
to compute simplicial homology groups. Some first steps towards this goal have been given,
see [8, 12, 11|, but much more work is still needed.
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