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Digital Image

@ 2D digital images:

@ elements are pixels

@ 3D digital images:

@ elements are voxels
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Simplicial Complexes

Simplicial Complex

Definition

Let V be an ordered set, called the vertex set.
A simplex over V is any finite subset of V.

Definition

Let o and B be simplices over V, we say « is a face of B if o is a subset of 3.

Definition

An ordered (abstract) simplicial complex over V is a set of simplices K over V
satisfying the property:
VaeK,if BCa=pek

Let KC be a simplicial complex. Then the set Sp(KC) of n-simplices of K is the set made
of the simplices of cardinality n + 1.
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vV =(0,1,2,3,4,5,6)

K = {0.(0). (1), (2), (3), (4, (5), (6),
(0,1),(0,2),(0,3),(1,2),(1,3),(2,3),(3,4),(4,5), (4,6), (5,6),
(0,1,2),(4,5,6)}
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Simplicial Complexes

Simplicial Complex

Definition

The facets of a simplicial complex K are the maximal simplices of the simplicial
complex.

The facets are: {(0,3),(1,3),(2,3),(3,4),(0,1,2),(4,5,6)}
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Chain Complexes

Chain Complex

Definition

A chain complex Ci is a pair of sequences Cx = (Cq,dq)qecz Where:

@ For every q € Z, the component Cg4 is an R-module, the chain group of degree q

@ For every q € Z, the component dy is a module morphism dq : Cq — C4_1, the
differential map

@ For every q € Z, the composition dqdg1 is null: dgdgy1 =0
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Homology

Definition

If Cx = (Cq,dq)qez is a chain complex:
@ The image By = im dgqy1 C Cq is the (sub)module of q-boundaries
@ The kernel Zg = ker dq C Cq is the (sub)module of g-cycles

Given a chain complex Ci = (Cy, dg)qez:
@ dy_10dy=0= B4y C 2Z,4
@ Every boundary is a cycle
@ The converse is not generally true
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Homology

Homology

Definition

If Cx = (Cq,dq)qez is a chain complex:
@ The image By = im dgqy1 C Cq is the (sub)module of q-boundaries
@ The kernel Zg = ker dq C Cq is the (sub)module of g-cycles

Given a chain complex Ci = (Cy, dg)qez:
@ dy_10dy=0= B4y C 2Z,4
@ Every boundary is a cycle
@ The converse is not generally true

Definition

Let C. = (Cq,dq)gez be a chain complex. For each degree n € Z, the n-homology
module of C, is defined as the quotient module

Ha(C) = 22
n
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Mathematical concepts Digital Image — Simplicial Complex

From a digital image to a simplicial complex

Digital Image

Simplicial Complex
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From Simplicial Complexes to Chain Complexes

Simplicial Complex:

Chain Complex

Definition

Let KC be an (ordered abstract) simplicial complex. Let n > 1 and 0 < i < n be two
integers n and i. Then the face operator O is the linear map 0 : $,(K) — Sp—1(KC)
defined by:

OM((voy-++5Vn)) = (Yo, + -y Vi1, Vigds -+ -5 V)

The i-th vertex of the simplex is removed, so that an (n — 1)-simplex is obtained.

| A

Definition

Let K be a simplicial complex. Then the chain complex Cy(K) canonically associated
with IC is defined as follows. The chain group C,(K) is the free Z module generated
by the n-simplices of K. In addition, let (vo, ..., vn—1) be a n-simplex of K, the
differential of this simplex is defined as:

n

dpi=» (—1)'0f

i=0
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Mathematical concepts Computing Homology groups

Computing

Chain Complex ———— - Homology

@ Computing Homology groups:
e From a Chain Complex (C,, dp)nez:

@ d, can be expressed as matrices
@ Homology groups are obtained from a diagonalization process
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@ Computing Homology groups:
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@ d, can be expressed as matrices
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o Directly from the Simplicial Complex:

@ Incidence simplicial matrices
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The Theorem Formalized and its Context Incidence simplicial matrices

Incidence Matrices

Let X and Y be two ordered finite sets of simplices, we call incidence matrix to a
matrix m X n where
m={|X] A n=4|Y]|
YAl - YIn]
X[1] a1 - A
M =
Ximl \am1 - amn
S = 1 4f X[i] is a face of Y[j]
W 0 if X[i] is not a face of Y[j]
v
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The Theorem Formalized and its Context Incidence simplicial matrices

Incidence Matrices

Definition

Let C be a finite set of simplices, A be the set of n-simplices of C with an order
between its elements and B the set of (n — 1)-simplices of C with an order between its
elements.

We call incidence matrix of dimension n (n > 1), to a matrix p X q where

p=1HBl A g=H|Al

M. — 1 4f BJi] is a face of Alj]
W 0 if BJ[i] is not a face of Alj]
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The Theorem Formalized and its Context Incidence simplicial matrices

Incidence Matrices of Simplicial Complexes

(0,1) (0,2) (0,3) (1,2) (1,3) (2,3) (3,4) (4,5 (4,6) (56)

(0) 1 1 1 0 0 0 0 0 0 0
(1) 1 0 0 1 1 0 0 0 0 0
) 0 1 0 1 0 1 0 0 0 0
(3) 0 0 1 0 1 1 1 0 0 0
(4) 0 0 0 0 0 0 1 1 1 0
(5) 0 0 0 0 0 0 0 1 0 1
(6) 0 0 0 0 0 0 0 0 1 1
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The Theorem Formalized and its Context Incidence simplicial matrices

Incidence Matrices of Simplicial Complexes

(0,1,2) (4,5,6)
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The Theorem Formalized and its Context [EENRTCITNEY [P R EITE)!

Product of two consecutive incidence matrices

Theorem (Product of two consecutive incidence matrices)

Let IC be a finite simplicial complex over V with an order between the simplices of the
same dimension and let n > 1 be a natural number n, then the product of the n-th
incidence matrix of K and the (n + 1)-incidence matrix of K over the ring 7./27 is
equal to the null matrix.
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The Theorem Formalized and its Context [ESICEe IR M W eICoYe1]

Sketch of the proof

o Let Spy1 be the set of (n+ 1)-simplices of K with an order
between its elements

o Let S, be the set of n-simplices of C with an order between
its elements

o Let S,_1 be the set of (n — 1)-simplices of K with an order
between its elements
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The Theorem Formalized and its Context [ESICEe IR M W eICoYe1]

Sketch of the proof

o Let Spy1 be the set of (n+ 1)-simplices of K with an order
between its elements

o Let S, be the set of n-simplices of C with an order between
its elements

o Let S,_1 be the set of (n — 1)-simplices of K with an order
between its elements

Sol1] -+ Splr1] Snalll - Spialr3]
Sn—1[1] a1 v ann Snll] by1 -+ bin
Ma(K) = : : s Mpi1(K) = )
Sn—1lr2l \aren1 -+ arn Snlr1] b o b

where r1 = {|S,|, r2 = §|Sp—1| and r3 = #|Sp+1]
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The Theorem Formalized and its Context [ESICEe IR M W eICoYe1]

Sketch of the proof

€1 ot €L
Mnp(K) x Mpi1(K) =
Cr2,1  tt Cr2r3
where
Gij= Z aj k X by j

1<k<rl

J. Heras, M. Poza, M. Dénés, and L. Rideau Incidence Simplicial Matrices Formalized in Coq/SSReflect CICM 2011



The Theorem Formalized and its Context [ESICEe IR M W eICoYe1]

Sketch of the proof

€1 o CLr3
Ma(K) X Ma1(K) =
Cr2,1 U Cr2,r3
where
Gij= Y aikX by
1<k<rl
we need to prove that
VI',_/'7 Cij= 0

in order to prove that M, X M,;1 =0
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The Theorem Formalized and its Context [ESICEe IR M W eICoYe1]

Sketch of the proof

€1 o CLr3
Ma(K) X Ma1(K) =
Cr2,1 U Cr2,r3
where
Gij= Y aikX by
1<k<rl
we need to prove that
VI',_/'7 Cij= 0

in order to prove that M, X M,;1 =0
Since k enumerates the indices of elements of S,:

Gj= 3 F(So-1lil, X) x F(X, Sps1lj]) with F(Y,Z) =
Xes,

1 ifYyedZ
0 otherwise

where

dZ ={Z\{x} | x€ 2}
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The Theorem Formalized and its Context [ESICEe IR M W eICoYe1]

Sketch of the proof

Gj = Z F(Sn—l[i]aX) X F(X7Sn+1[j])
XeS,

J. Heras, M. Poza, M. Dénés, and L. Rideau Incidence Simplicial Matrices Formalized in Coq/SSReflect CICM 2011



The Theorem Formalized and its Context [ESICEe IR M W eICoYe1]

Sketch of the proof

Gij =

> F(Sn-ali], X) x F(X, Spsa[i])
XeS,
- = F(Snp-1[i], X) x 1
XES,|X€dSn+11]
+ > F(S,-1]i], X) x 0
X€S,|X¢&0Snt1lj]
= > F(Sn-1[i], X)
X€S,|X€DSnt1])]
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The Theorem Formalized and its Context [ESICEe IR M W eICoYe1]

Sketch of the proof

Gj = Z F(Sn—l[i]ax) X F(X7Sn+1[j])
XeS,

— = F(Snp-1[i], X) x 1
XES,|X€dSn+11]
+ > F(S,-1]i], X) x 0
X€S,|X¢&0Snt1lj]
= > F(Sn-1[i], X)
X€S,|X€DSnt1])]

= Z F(Snfl[i]v 5n+1[j] \ {X})

xE€Sny1l/]
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The Theorem Formalized and its Context [ESICEe IR M W eICoYe1]

Sketch of the proof

Gj = Z F(Sn—l[i]ax) X F(X’5n+1[/-])
XeS,

— = F(Snp-1[i], X) x 1
XES,|X€dSn+11]
+ > F(S,-1]i], X) x 0
X€S,|X¢&0Snt1lj]
= > F(Sn-1[i], X)
X€S,|X€DSnt1])]

= Z F(Snfl[i]v 5n+1[j] \ {X})

xE€Sny1l/]

= > F(Sn—1lil; Snea ]\ {x})+

x€Spt1[/]|1x€Sn—1]i]

F(Snfl[i]v 5n+1|j] \ {X})

x€Spi1[j][x¢Sn-1[i]
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Sketch of the proof

Gj = Z F(Sn—l[i]ax) X F(X’5n+1[/-])
XeS,

— = F(Snp-1[i], X) x 1
XES,|X€dSn+11]
+ > F(S,-1]i], X) x 0
X€S,|X¢&0Snt1lj]
= > F(Sn-1[i], X)
X€S,|X€DSnt1])]

= Z F(Snfl[i]v 5n+1[j] \ {X})

xE€Sny1l/]

= > F(Sn—1lil; Snea ]\ {x})+

x€Spt1[/]|1x€Sn—1]i]

F(Snfl[i]v 5n+1|j] \ {X})

x€Sp1[j][x¢Sn-1[i]

= 2 F(Sn-1ll; Snal]\ {x3)

x€Spa[j]Ix¢Sn-1[i]
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The Theorem Formalized and its Context [ESICEe IR M W eICoYe1]

Sketch of the proof

® Sp1li] € Sntali]
® Sp1[i] C Sntali]

J. Heras, M. Poza, M. Dénés, and L. Rideau Incidence Simplicial Matrices Formalized in Coq/SSReflect CICM 2011



The Theorem Formalized and its Context [ESICEe IR M W eICoYe1]

Sketch of the proof

o Sp-1[il ¢ Sntali]
Vx € Sp-1[i], F(Sn—1[i], Sn+1l]\ {x}) =0

o Sn_l[i] (- 5n+1[j]
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The Theorem Formalized and its Context [ESICEe IR M W eICoYe1]

Sketch of the proof

o Sp-1li] € Snt1lJ]

Vx € Snali], F(Sn—1li], Sn4ali]\ {x}) =0
® S, 1[i] C Sny1li]

F(Sn-1lil; Satal]\ {x}) =1

Cj = DoxeSpalj]ix¢Snal] L

81Sn+1 0]\ Sn—a[f]|
= n+2—-—n=2=0mod 2

CICM 2011
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Formal development

SSREFLECT

@ SSReflect:

e Extension of CoQ
o Developed while formalizing the Four Color Theorem
e Provides new libraries:
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Formal development

SSREFLECT

@ SSReflect:

e Extension of CoQ
o Developed while formalizing the Four Color Theorem
e Provides new libraries:
@ matrix.v: matrix theory
o finset.v and fintype.v: finite set theory and finite types
n
o bigops.v: indexed “big” operations, like > f(i) or | f (/)
i=0 i€l
@ zmodp.v: additive group and ring Z,
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Formal development

Representation of Simplicial Complexes in SSREFLECT

Definition

Let V be a finite ordered set, called the vertex set, a simplex over V is any finite
subset of V.

Variable V : finType.
Definition simplex := {set V}.
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Formal development

Representation of Simplicial Complexes in SSREFLECT

Let V be a finite ordered set, called the vertex set, a simplex over V is any finite
subset of V.

Definition

| A\

A finite ordered (abstract) simplicial complex over V is a finite set of simplices K over
V satisfying the property:

Vaek,ifCa=Beck

\

Variable V : finType.
Definition simplex := {set V}.
Definition simplicial_complex (c : {set simplex}) :=
forall x, x \in ¢ —> forall y : simplex, y \subset x —> y \in c.
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Formal development

Incidence Matrices

Let X and Y be two ordered finite sets of simplices, we call incidence matrix to a
matrix m X n where

m=4IX| A n=t|Y|

Y] - Yin]

X[1] E I B

M =
Ximl \am1 - amn
S = 1 4f X[i] is a face of Y[j]
A 0 if X[i] is not a face of Y[j]

Definition face_op (S : simplex) (x : V) := S :\ x.
Definition boundary (S : simplex) := (face_op S) @: S.

Variables Left Top : {set simplex}.
Definition incidenceMatrix :=
\matrix_(i < #|Left|, j < #|Top|)
if enum_val i \in boundary (enum_val j) then 1 else 0:'F_2.

J. Heras, M. Poza, M. Dénés, and L. Rideau Incidence Simplicial Matrices Formalized in Coq/SSReflect CICM 2011



Formal development

Incidence Matrices

Definiti

Let C be a finite set of simplices, A be the set of n-simplices of C with an order
between its elements and B the set of (n — 1)-simplices of C with an order between its
elements.

We call incidence matrix of dimension n (n > 1), to a matrix p X q where

p=14Bl A g=H|Al

M. — 1 4f BJi] is a face of Alj]
W 0 4f BJi] is not a face of A[j]

Section nth_incidence_matrix.
Variable c: {set simplex}.
Variable n:nat.
Definition n_1_simplices := [set x \in c | #|x| == n].
Definition n_simplices := [set x \in c | #|x| == n+1].
Definition incidence_matrix_n :=
incidenceMatrix n_1_simplices n_simplices.
End nth_incidence_matrix.
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Formal development

Product of two consecutive incidence matrices in Z,

Theorem (Product of two consecutive incidence matrices in Zy)

Let KC be a finite simplicial complex over V' with an order between the simplices of the
same dimension and let n > 1 be a natural number n, then the product of the n-th
incidence matrix of K and the (n + 1)-incidence matrix of K over the ring Z./27 is
equal to the null matrix.

Theorem incidence_matrices_sc_product:
forall (V:finType) (nmnat) (sc: {set (simplex V)}),
simplicial_complex sc —>
(incidence_mx_n sc n) *m (incidence_mx_n sc (n.4+1)) = 0.
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Formal development

Formalization in SSREFLECT of the theorem

@ Summation part:
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Formal development

Formalization in SSREFLECT of the theorem

@ Summation part:

e Lemmas from “bigop” library
obigl: ¥ F= Y F+ Y F
i€r|P; i€r|PiAaj i€r|Pin~a;
e bigl: > 0=0
ier|P;
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Formal development

Formalization in SSREFLECT of the theorem

@ Summation part:

e Lemmas from “bigop” library
e bigID: > F= > F+ > F
i€r|P; i€r|PiAaj i€r|Pin~a;
e bigl: > 0=0
ier|P;
e Cardinality part:
o Auxiliary lemmas
e Lemmas from “finset” and “fintype"” libraries
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o Simplicial complexes
o Incidence matrices
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o Formalization in Coq/SSReflect:

o Simplicial complexes
o Incidence matrices

e Application of formal methods in software systems
o Further work:
e Formalization:

o From digital images to simplicial complexes
o Computation Smith Normal Form

o /27 — 7
e Executability of the proofs:

o Code extraction
@ Internal computations
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The end Thank you for your attention
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