ACL2 verification of Simplicial Complexes programs for the Kenzo system¹

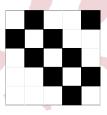
Jónathan Heras, Vico Pascual and Julio Rubio

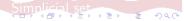
Departamento de Matemáticas y Computación Universidad de La Rioja Spain

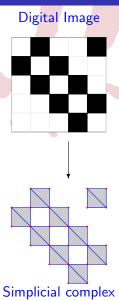
February 10, 2011

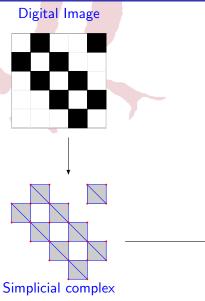
¹Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7. STREP project ForMath

Digital Image









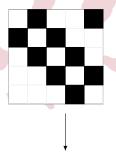
 $K_0 = \text{vertices}$

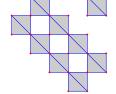
 $K_1 = \mathsf{edges}$

 $K_2 = \text{triangles}$

Simplicial set

Digital Image





Simplicial complex

Homology groups

$$H_0 = \mathbb{Z} \oplus \mathbb{Z}$$

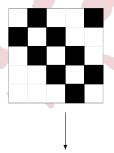
$$H_1 = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$$

$$K_1 = \mathsf{edges}$$

$$K_2 = \text{triangles}$$

Simplicial set

Digital Image



Simplicial complex

Homology groups

$$H_0 = \mathbb{Z} \oplus \mathbb{Z}$$

$$H_1 = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$$

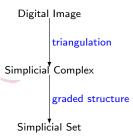
 $K_1 = \mathsf{edges}$

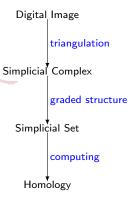
 $K_2 = \text{triangles}$

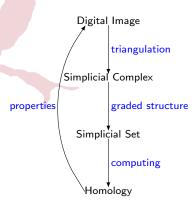
Simplicial set

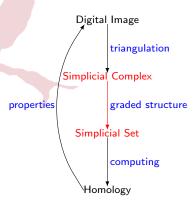
Digital Image

Digital Image triangulation Simplicial Complex









- Goal:
 - A new certified program for Simplicial Complexes

- Kenzo
 - Symbolic Computation System devoted to Algebraic Topology

- Kenzo
 - Symbolic Computation System devoted to Algebraic Topology
 - Homology groups unreachable by any other means

- Kenzo
 - Symbolic Computation System devoted to Algebraic Topology
 - Homology groups unreachable by any other means
 - A Common Lisp package

- Symbolic Computation System devoted to Algebraic Topology
- Homology groups unreachable by any other means
- A Common Lisp package
- Works with the main mathematical structures in Simplicial Algebraic Topology

- Kenzo
 - Symbolic Computation System devoted to Algebraic Topology
 - Homology groups unreachable by any other means
 - A Common Lisp package
 - Works with the main mathematical structures in Simplicial Algebraic Topology
- Increasing the reliability of Kenzo by means of Theorem Provers:
 - Isabelle
 - Coq
 - ACL2

- Kenzo
 - Symbolic Computation System devoted to Algebraic Topology
 - Homology groups unreachable by any other means
 - A Common Lisp package
 - Works with the main mathematical structures in Simplicial Algebraic Topology
- Increasing the reliability of Kenzo by means of Theorem Provers:
 - Isabelle
 - Coq
 - ACL2 simplicial structures

ACL2

 ACL2 (A Computational Logic for an Applicative Common Lisp)

ACL2

- ACL2 (A Computational Logic for an Applicative Common Lisp)
- ACL2
 - Programming Language
 - First-Order Logic
 - Theorem Prover

ACL2

- ACL2 (A Computational Logic for an Applicative Common Lisp)
- ACL2
 - Programming Language
 - First-Order Logic
 - Theorem Prover
- Proof techniques:
 - Simplification
 - Induction
 - "The Method"

- Goal:
 - New Kenzo module for Simplicial Complexes certified in ACL2

Table of Contents

Table of Contents

Definition

Let V be an ordered set, called the vertex set. A simplex over V is any finite subset of V.

Definition

Let V be an ordered set, called the vertex set. A simplex over V is any finite subset of V.

Definition

Let α and β be simplexes over V, we say α is a face of β if α is a subset of β .

Definition

Let V be an ordered set, called the vertex set.

A simplex over V is any finite subset of V.

Definition

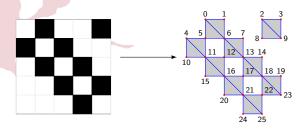
Let α and β be simplexes over V, we say α is a face of β if α is a subset of β .

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes K over V satisfying the property:

$$\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$$

Let K be a simplicial complex. Then the set $S_n(K)$ of n-simplexes of K is the set made of the simplexes of cardinality n+1.

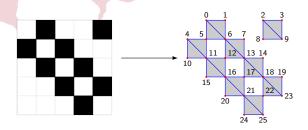


$$V = (0, 1, 2, \dots, 24, 25)$$

 $\mathcal{K} = \mathsf{vertices} \cup \mathsf{edges} \cup \mathsf{triangles}$

Definition

The facets of a simplicial complex ${\cal K}$ are the maximal simplexes of the simplicial complex.



The facets are the triangles

Simplicial Sets

Definition

A simplicial set K, is a union $K = \bigcup_{q \geq 0} K^q$, where the K^q are disjoints sets, together

with functions:

$$\begin{array}{ll} \partial_i^q : K^q \to K^{q-1}, & q > 0, & i = 0, \dots, q, \\ \eta_i^q : K^q \to K^{q+1}, & q \geq 0, & i = 0, \dots, q, \end{array}$$

subject to the relations:

From Simplicial Complexes to Simplicial Sets

Simplicial Complex

graded structure

→ Simplicial Set

Definition

Let C be a simplicial complex. Then the *simplicial set* K(C) *canonically associated* with C is defined as follows. The set $K^n(C)$ of n-simplexes is the set made of the simplexes of cardinality n+1 of C. In addition, let a simplex $\{v_0,\ldots,v_q\}$ the *face* and *degeneracy* operators are defined as follows:

$$\begin{array}{lcl} \partial_i(\{v_0, \dots, v_i, \dots, v_q\}) & = & \{v_0, \dots, v_{i-1}, v_{i+1}, \dots, v_q\} \\ \eta_i(\{v_0, \dots, v_i, \dots, v_q\}) & = & \{v_0, \dots, v_i, v_i, \dots, v_q\} \end{array}$$

Goals

New Kenzo module:

Goals

- New Kenzo module:
 - program1: facets → simplicial complex
 - ullet program2: simplicial complex o simplicial set

Goals

- New Kenzo module:
 - program1: facets → simplicial complex
 - program2: simplicial complex → simplicial set
- Certification of the correctness of the programs in ACL2

Table of Contents

Program1: Simplicial Complex from facets

simplicial-complex-generator:

Input: a list of simplexes

Output: a simplicial complex

Program1: Simplicial Complex from facets

simplicial-complex-generator:

Input: a list of simplexes
Output: a simplicial complex

• simplicial-complex-generator-with-duplicates:

Input: a list of simplexes

Output: a list of simplexes with the properties of simplicial

complexes but with duplicates

Program1: Simplicial Complex from facets

simplicial-complex-generator:

Input: a list of simplexes
Output: a simplicial complex

• simplicial-complex-generator-with-duplicates:

Input: a list of simplexes

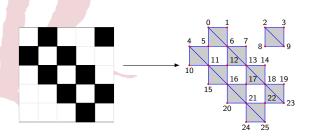
Output: a list of simplexes with the properties of simplicial

complexes but with duplicates

• simplicial-complex-generator-from-simplex:

Input: a simplex

Output: a simplicial complex



```
> (setf image-sc (simplicial-complex-generator
'((0 1 6) (0 5 6) (2 3 9) (2 8 9) (4 5 11) (4 10 11)
(6 7 13) (6 12 13) (11 12 16) (11 15 16) (13 14 18) (13 17 18)
(16 17 21) (16 20 21) (18 19 23) (18 22 23) (21 22 25) (21 24 25)))
((0 1 6) (0 1) (0 6) (1 6) (0) (1) (6) (0 5 6) (0 5) (5 6) ...)
```

Program2: Simplicial Set from Simplicial Complex

ss-from-sc:Input: a simplicial complexOutput: a simplicial set

Program2: Simplicial Set from Simplicial Complex

• ss-from-sc:

Input: a simplicial complex *Output:* a simplicial set

• Kenzo function build-smst:

```
(build-smst
  :basis basis
  :face face
  ...)
```

- basis: a function returning the list of simplexes in a dimension
- face: a function for face operation
- degeneracy: not included

Simplicial set canonically associated to image-sc:

```
> (setf image-ss (ss-from-sc image-sc)) \( \frac{\frac{1}{3}}{1} \)
```

Simplicial set canonically associated to image-sc:

```
Simplicial set canonically associated to image-sc:
```

```
> (setf image-ss (ss-from-sc image-sc))
[K1 Simplicial-Set]
> (basis image-ss 0)
((0) (1) (2) (3) (4) (5) (6) (7) (8) (9) ...)
> (homology image-ss 0 2)
Homology in dimension 0:
Component Z
Component Z
Homology in dimension 1:
Component Z
Component Z
Component Z
H_0(image) = \mathbb{Z} \oplus \mathbb{Z} and H_1(image) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}
```

Table of Contents

simplicial-complex-generator program:

simplicial-complex-generator program:

Follows simple inductive schemas

```
simplicial-complex-generator program:
```

- Follows simple inductive schemas
- Inefficient

Input of a list of 11613 simplexes:

```
> (simplicial-complex-generator ...)  
Error: Stack overflow (signal 1000)
[condition type: SYNCHRONOUS-OPERATING-SYSTEM-SIGNAL]
```

```
simplicial-complex-generator program:
```

- Follows simple inductive schemas
- Inefficient

Input of a list of 11613 simplexes:

```
> (simplicial-complex-generator ...) \(\frac{\mathcal{H}}{\mathcal{H}}\)

Error: Stack overflow (signal 1000)

[condition type: SYNCHRONOUS-OPERATING-SYSTEM-SIGNAL]
```

optimized-simplicial-complex-generator:

```
simplicial-complex-generator program:
```

- Follows simple inductive schemas
- Inefficient

Input of a list of 11613 simplexes:

```
> (simplicial-complex-generator ...) \(\frac{\mathbf{H}}{2}\)

Error: Stack overflow (signal 1000)

[condition type: SYNCHRONOUS-OPERATING-SYSTEM-SIGNAL]
```

optimized-simplicial-complex-generator:

Equivalent efficient program

simplicial-complex-generator program:

- Follows simple inductive schemas
- Inefficient

Input of a list of 11613 simplexes:

```
> (simplicial-complex-generator ...) \(\frac{\mathcal{H}}{\mathcal{H}}\)

Error: Stack overflow (signal 1000)

[condition type: SYNCHRONOUS-OPERATING-SYSTEM-SIGNAL]
```

optimized-simplicial-complex-generator:

- Equivalent efficient program
- Memoization technique

Situation:

simplicial-complex-generator program is

• optimized-simplicial-complex-generator program is

- simplicial-complex-generator program is
 - specially designed to be proved;

- optimized-simplicial-complex-generator program is
 - designed to be efficient;

- simplicial-complex-generator program is
 - specially designed to be proved;
 - programmed in ACL2 (and, of course, Common Lisp);

- optimized-simplicial-complex-generator program is
 - designed to be efficient;
 - written in Common Lisp;

- simplicial-complex-generator program is
 - specially designed to be proved;
 - programmed in ACL2 (and, of course, Common Lisp);
 - not efficient;

- optimized-simplicial-complex-generator program is
 - designed to be efficient;
 - written in Common Lisp;
 - efficient;

- simplicial-complex-generator program is
 - specially designed to be proved;
 - programmed in ACL2 (and, of course, Common Lisp);
 - not efficient;
 - tested;
- optimized-simplicial-complex-generator program is
 - designed to be efficient;
 - written in Common Lisp;
 - efficient:
 - tested;

- simplicial-complex-generator program is
 - specially designed to be proved;
 - programmed in ACL2 (and, of course, Common Lisp);
 - not efficient;
 - tested:
 - proved in ACL2
- optimized-simplicial-complex-generator program is
 - designed to be efficient;
 - written in Common Lisp;
 - efficient:
 - tested:
 - unproved

• optimized-simplicial-complex-generator "equivalent to" simplicial-complex-generator

- optimized-simplicial-complex-generator "equivalent to" simplicial-complex-generator
- Not a proof of the equivalence

- optimized-simplicial-complex-generator "equivalent to" simplicial-complex-generator
- Not a proof of the equivalence
- Automated testing

```
(defun automated-testing ()
  (let ((cases (generate-test-cases 100000)))
    (dolist (case cases)
      (if (not (equal-as-sc (simplicial-complex-generator case)
                    (optimized-simplicial-complex-generator case)))
          (report-on-failure case))))
```

A Common Lisp (but not ACL2) program

Definition

$$\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$$

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes K over V satisfying the property:

$$\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$$

• simplex: simplex-p

Definition

$$\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$$

- simplex: simplex-p
- list of simplexes: list-of-simplexes-p
- without duplicates: without-duplicates-p

Definition

$$\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$$

- simplex: simplex-p
- list of simplexes: list-of-simplexes-p
- without duplicates: without-duplicates-p
- face: subsetp-equal (ACL2)

Definition

$$\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$$

- simplex: simplex-p
- list of simplexes: list-of-simplexes-p
- without duplicates: without-duplicates-p
- face: subsetp-equal (ACL2)
- member: member-equal (ACL2)

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes K over V satisfying the property:

 $\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$

ACL2 Lemma

Let Is be a list of simplexes, then (simplicial-complex-generator Is) builds a set of simplexes.

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes K over V satisfying the property:

 $\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$

ACL2 Lemma

Let x be a simplex and is be a list of simplexes, if x is in (simplicial-complex-generator | s) and y is a face of x, then y is in (simplicial-complex-generator | s).

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes K over V satisfying the property:

$$\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$$

ACL2 Lemma

Let ls be a list of simplexes and let s be an element of the simplicial complex constructed with the simplicial-complex-generator function taking as argument ls; then, s is a face of some of the simplexes of ls.

ACL2 Theorem

Let Is be a list of simplexes, then (simplicial-complex-generator Is) constructs the simplicial complex associated with Is.

Proof

Apply the three previous lemmas

Theorem for Simplicial Sets from Simplicial Complexes

Proving truthfulness of Kenzo statements like:

```
> (setf image-ss (SS-from-SC image-sc)) \( \frac{\mathbf{H}}{\text{Simplicial-Set}} \)
```

where image-sc is a simplicial complex

Theorem for Simplicial Sets from Simplicial Complexes

Proving truthfulness of Kenzo statements like:

```
> (setf image-ss (SS-from-SC image-sc)) \( \frac{\frac{1}{4}}{4} \)
[K1 Simplicial-Set]
```

where image-sc is a simplicial complex

ACL2 Theorem

Let sc be a simplicial complex, then (ss-from-sc sc) constructs a simplicial set.

Main Tools

ACL2 Theorem

Let $\mathcal K$ be a Kenzo object implementing a simplicial set. If for every natural number $q\geq 2$ and for every geometric simplex gmsm in dimension q the following properties hold:

- 2 $\forall i \in \mathbb{N}, i \leq q: \partial_i^q \text{gmsm is a simplex of } \mathcal{K} \text{ in dimension } q-1,$

then:

K is a simplicial set.

J. Heras, V. Pascual and J. Rubio, *Proving with ACL2 the correctness of simplicial sets in the Kenzo system*. In LOPSTR 2010, Lecture Notes in Computer Science. Springer-Verlag.

Main Tools

ACL2 Theorem

Let $\mathcal K$ be a Kenzo object implementing a simplicial set. If for every natural number $q\geq 2$ and for every geometric simplex gmsm in dimension q the following properties hold:

- 2 $\forall i \in \mathbb{N}, i \leq q: \partial_i^q \text{gmsm is a simplex of } \mathcal{K} \text{ in dimension } q-1,$

then:

 ${\cal K}$ is a simplicial set.

J. Heras, V. Pascual and J. Rubio, *Proving with ACL2 the correctness of simplicial sets in the Kenzo system*. In LOPSTR 2010, Lecture Notes in Computer Science. Springer-Verlag.

- Generic instantiation tool:
 - Development of a generic theory
 - Instantiation of definitions and theorems for different implementations

F. J. Martín-Mateos, J. A. Alonso, M. J. Hidalgo, and J. L. Ruiz-Reina. A Generic Instantiation Tool and a Case Study: A Generic Multiset Theory. Proceedings of the Third ACL2 workshop. Grenoble, Francia, pp. 188–203, 2002.

Generic simplicial set theory

- Generic simplicial set theory for simplicial complexes:
 - From 4 definitions and 4 theorems

Generic simplicial set theory

- Generic simplicial set theory for simplicial complexes:
 - From 4 definitions and 4 theorems
 - Instantiates 3 definitions and 7 theorems (+ 89 definitions and 969 theorems)

Generic simplicial set theory

- Generic simplicial set theory for simplicial complexes:
 - From 4 definitions and 4 theorems
 - Instantiates 3 definitions and 7 theorems (+ 89 definitions and 969 theorems)

ACL2 Theorem

Let sc be a simplicial complex, then (ss-from-sc sc) constructs a simplicial set.

Table of Contents

Digital Image → Simplicial Complex → Simplicial Sets → Homology

Conclusions:

- Conclusions:
 - New module for the Kenzo system

- Conclusions:
 - New module for the Kenzo system
 - Certification of the correctness of the new programs

- Conclusions:
 - New module for the Kenzo system
 - Certification of the correctness of the new programs
- Further Work:

- Conclusions:
 - New module for the Kenzo system
 - Certification of the correctness of the new programs
- Further Work:
 - Efficient algorithm in the ACL2 system

- Conclusions:
 - New module for the Kenzo system
 - Certification of the correctness of the new programs
- Further Work:
 - Efficient algorithm in the ACL2 system
 - Equivalence between the new algorithm and the previous one

- Conclusions:
 - New module for the Kenzo system
 - Certification of the correctness of the new programs
- Further Work:
 - Efficient algorithm in the ACL2 system
 - Equivalence between the new algorithm and the previous one
 - Digital Images → Simplicial Complexes

- Conclusions:
 - New module for the Kenzo system
 - Certification of the correctness of the new programs
- Further Work:
 - Efficient algorithm in the ACL2 system
 - Equivalence between the new algorithm and the previous one
 - Digital Images → Simplicial Complexes
 - Simplicial Sets \rightarrow Homology

ACL2 verification of Simplicial Complexes programs for the Kenzo system

Jónathan Heras, Vico Pascual and Julio Rubio

Departamento de Matemáticas y Computación Universidad de La Rioja Spain

February 10, 2011

