
ACL2(ml): Machine-Learning for ACL2

J. Heras and E. Komendantskaya

http://staff.computing.dundee.ac.uk/katya/acl2ml/

12 July 2014
ACL2’14

J. Heras ACL2(ml): Machine-Learning for ACL2 1/23

http://staff.computing.dundee.ac.uk/katya/acl2ml/

Outline

1 Some Challenges in ACL2

2 An overview of ACL2(ml)

3 Statistical Pattern Recognition with ACL2(ml)

4 Symbolic methods in ACL2(ml)

5 Conclusions

J. Heras ACL2(ml): Machine-Learning for ACL2 2/23

Some Challenges in ACL2

Outline

1 Some Challenges in ACL2

2 An overview of ACL2(ml)

3 Statistical Pattern Recognition with ACL2(ml)

4 Symbolic methods in ACL2(ml)

5 Conclusions

J. Heras ACL2(ml): Machine-Learning for ACL2 3/23

Some Challenges in ACL2

Some Challenges in ACL2

Size of ACL2 library stands on the way of efficient knowledge reuse.

Manual handling of proofs, strategies, libraries becomes difficult.

Coordination of team-development can be hard.

Comparison of proof similarities.

Discovery of auxiliary lemmas can be difficult.

Could Machine-Learning help us to face some of these challenges?

Statistical methods can discover patterns in proofs but are weak for
conceptualisation.

Symbolic methods (Proof planning, lemma discovery) can conceptualise but
have limitations.

Combination of statistical and symbolic methods:

Statistical methods can take advantage of symbolic methods to

conceptualise results.

Symbolic tools can use statistical results for efficient lemma discovery.

J. Heras ACL2(ml): Machine-Learning for ACL2 4/23

Some Challenges in ACL2

Some Challenges in ACL2

Size of ACL2 library stands on the way of efficient knowledge reuse.

Manual handling of proofs, strategies, libraries becomes difficult.

Coordination of team-development can be hard.

Comparison of proof similarities.

Discovery of auxiliary lemmas can be difficult.

Could Machine-Learning help us to face some of these challenges?

Statistical methods can discover patterns in proofs but are weak for
conceptualisation.

Symbolic methods (Proof planning, lemma discovery) can conceptualise but
have limitations.

Combination of statistical and symbolic methods:

Statistical methods can take advantage of symbolic methods to

conceptualise results.

Symbolic tools can use statistical results for efficient lemma discovery.

J. Heras ACL2(ml): Machine-Learning for ACL2 4/23

Some Challenges in ACL2

Some Challenges in ACL2

Size of ACL2 library stands on the way of efficient knowledge reuse.

Manual handling of proofs, strategies, libraries becomes difficult.

Coordination of team-development can be hard.

Comparison of proof similarities.

Discovery of auxiliary lemmas can be difficult.

Could Machine-Learning help us to face some of these challenges?

Statistical methods can discover patterns in proofs but are weak for
conceptualisation.

Symbolic methods (Proof planning, lemma discovery) can conceptualise but
have limitations.

Combination of statistical and symbolic methods:

Statistical methods can take advantage of symbolic methods to

conceptualise results.

Symbolic tools can use statistical results for efficient lemma discovery.

J. Heras ACL2(ml): Machine-Learning for ACL2 4/23

An overview of ACL2(ml)

Outline

1 Some Challenges in ACL2

2 An overview of ACL2(ml)

3 Statistical Pattern Recognition with ACL2(ml)

4 Symbolic methods in ACL2(ml)

5 Conclusions

J. Heras ACL2(ml): Machine-Learning for ACL2 5/23

An overview of ACL2(ml)

ACL2(ml)

User
Emacs Interface

extended with ACL2(ml)
ACL2

checking

counterexample

generation

guard
lemmas

new

Symbolic Lemma Discovery

(Lemma Analogy)

extraction
feature

lemmas/definitions

similar

Statistical Machine-Learning

(Clustering) similar lemmas

F.1. works on the background of Emacs extracting some low-level features from
ACL2 definitions and theorems.

F.2. automatically sends the gathered statistics to a chosen machine-learning
interface and triggers execution of a clustering algorithm of user’s choice;

F.3. does some post-processing of the results and

F.3.a displays families of related proofs (or definitions) to the user.

F.3.b uses the families of related proofs to discover new lemmas.

J. Heras ACL2(ml): Machine-Learning for ACL2 6/23

Statistical Pattern Recognition with ACL2(ml)

Outline

1 Some Challenges in ACL2

2 An overview of ACL2(ml)

3 Statistical Pattern Recognition with ACL2(ml)

4 Symbolic methods in ACL2(ml)

5 Conclusions

J. Heras ACL2(ml): Machine-Learning for ACL2 7/23

Statistical Pattern Recognition with ACL2(ml)

Extracting features from ACL2

Feature extraction:

We extract features directly from term trees of ACL2 terms.

Definition (Term tree)

A variable or a constant is represented by a tree consisting of one single node, labelled
by the variable or the constant itself. A function application f (t1, . . . , tn) is
represented by the tree with the root node labelled by f , and its immediate subtrees
given by trees representing t1, . . . , tn.

(implies (natp n) (equal (fact-tail n) (fact n))

implies

natp

n

equal

fact-tail fact

n n

J. Heras ACL2(ml): Machine-Learning for ACL2 8/23

Statistical Pattern Recognition with ACL2(ml)

Extracting features from ACL2

Feature extraction:

We extract features directly from term trees of ACL2 terms.

Definition (Term tree)

A variable or a constant is represented by a tree consisting of one single node, labelled
by the variable or the constant itself. A function application f (t1, . . . , tn) is
represented by the tree with the root node labelled by f , and its immediate subtrees
given by trees representing t1, . . . , tn.

(implies (natp n) (equal (fact-tail n) (fact n))

implies

natp

n

equal

fact-tail fact

n n

J. Heras ACL2(ml): Machine-Learning for ACL2 8/23

Statistical Pattern Recognition with ACL2(ml)

Extracting features from ACL2

Feature extraction:

We extract features directly from term trees of ACL2 terms.

Definition (Term tree)

A variable or a constant is represented by a tree consisting of one single node, labelled
by the variable or the constant itself. A function application f (t1, . . . , tn) is
represented by the tree with the root node labelled by f , and its immediate subtrees
given by trees representing t1, . . . , tn.

(implies (natp n) (equal (fact-tail n) (fact n))

implies

natp

n

equal

fact-tail fact

n n

J. Heras ACL2(ml): Machine-Learning for ACL2 8/23

Statistical Pattern Recognition with ACL2(ml)

ACL2(ml) term tree matrices

We have devised a compact feature extraction method.

Definition (Term tree depth level)

Given a term tree T , the depth of the node t in T , denoted by depth(t), is defined as
follows:
− depth(t) = 0, if t is a root node;
− depth(t) = n + 1, where n is the depth of the parent node of t.

Definition (ACL2(ml) term tree matrices)

Given a term tree T for a term with signature Σ, and a function [.] : Σ→ Q, the
ACL2(ml) term tree matrix MT is a 7× 7 matrix that satisfies the following conditions:
− the (0, j)-th entry of MT is a number [t], such that t is a node in T , t is a variable
and depth(t) = j .
− the (i , j)-th entry of MT (i 6= 0) is a number [t], such that t is a node in T , t has
arity i + 1 and depth(t) = j .

J. Heras ACL2(ml): Machine-Learning for ACL2 9/23

Statistical Pattern Recognition with ACL2(ml)

ACL2(ml) term tree matrices

We have devised a compact feature extraction method.

Definition (Term tree depth level)

Given a term tree T , the depth of the node t in T , denoted by depth(t), is defined as
follows:
− depth(t) = 0, if t is a root node;
− depth(t) = n + 1, where n is the depth of the parent node of t.

Definition (ACL2(ml) term tree matrices)

Given a term tree T for a term with signature Σ, and a function [.] : Σ→ Q, the
ACL2(ml) term tree matrix MT is a 7× 7 matrix that satisfies the following conditions:
− the (0, j)-th entry of MT is a number [t], such that t is a node in T , t is a variable
and depth(t) = j .
− the (i , j)-th entry of MT (i 6= 0) is a number [t], such that t is a node in T , t has
arity i + 1 and depth(t) = j .

J. Heras ACL2(ml): Machine-Learning for ACL2 9/23

Statistical Pattern Recognition with ACL2(ml)

ACL2(ml) term tree matrices

We have devised a compact feature extraction method.

Definition (Term tree depth level)

Given a term tree T , the depth of the node t in T , denoted by depth(t), is defined as
follows:
− depth(t) = 0, if t is a root node;
− depth(t) = n + 1, where n is the depth of the parent node of t.

Definition (ACL2(ml) term tree matrices)

Given a term tree T for a term with signature Σ, and a function [.] : Σ→ Q, the
ACL2(ml) term tree matrix MT is a 7× 7 matrix that satisfies the following conditions:
− the (0, j)-th entry of MT is a number [t], such that t is a node in T , t is a variable
and depth(t) = j .
− the (i , j)-th entry of MT (i 6= 0) is a number [t], such that t is a node in T , t has
arity i + 1 and depth(t) = j .

J. Heras ACL2(ml): Machine-Learning for ACL2 9/23

Statistical Pattern Recognition with ACL2(ml)

An example

implies

natp

n

equal

fact-tail fact

n n

variables arity 0 arity 1 arity 2

td0 0 0 0 [implies]
td1 0 0 [natp] [equal]
td2 [n] 0 [fact-tail]::[fact] 0
td3 [n]::[n] 0 0 0

J. Heras ACL2(ml): Machine-Learning for ACL2 10/23

Statistical Pattern Recognition with ACL2(ml)

Clustering in ACL2(ml)

We have integrated Emacs with a variety of clustering algorithms:

Unsupervised machine learning technique:

J. Heras ACL2(ml): Machine-Learning for ACL2 11/23

Statistical Pattern Recognition with ACL2(ml)

Clustering in ACL2(ml)

We have integrated Emacs with a variety of clustering algorithms:

Unsupervised machine learning technique:

J. Heras ACL2(ml): Machine-Learning for ACL2 11/23

Statistical Pattern Recognition with ACL2(ml)

Clustering in ACL2(ml)

We have integrated Emacs with a variety of clustering algorithms:

Unsupervised machine learning technique:

Engines: Matlab, Weka, Octave, R, . . .

Algorithms: K-means, simple Expectation Maximisation, . . .

J. Heras ACL2(ml): Machine-Learning for ACL2 11/23

Statistical Pattern Recognition with ACL2(ml)

Clustering in ACL2(ml)

We have integrated Emacs with a variety of clustering algorithms:

Unsupervised machine learning technique:

Engines: Matlab, Weka, Octave, R, . . .

Algorithms: K-means, simple Expectation Maximisation, . . .

J. Heras ACL2(ml): Machine-Learning for ACL2 11/23

Statistical Pattern Recognition with ACL2(ml)

Clustering in ACL2(ml)

We have integrated Emacs with a variety of clustering algorithms:

Unsupervised machine learning technique:

Engines: Matlab, Weka, Octave, R, . . .

Algorithms: K-means, simple Expectation Maximisation, . . .

J. Heras ACL2(ml): Machine-Learning for ACL2 11/23

Statistical Pattern Recognition with ACL2(ml)

Clustering in ACL2(ml)

We have integrated Emacs with a variety of clustering algorithms:

Unsupervised machine learning technique:

Engines: Matlab, Weka, Octave, R, . . .

Algorithms: K-means, simple Expectation Maximisation, . . .

J. Heras ACL2(ml): Machine-Learning for ACL2 11/23

Statistical Pattern Recognition with ACL2(ml)

Recurrent clustering

Three kinds of function symbols:

Built-in functions: predefined value.

Variables: based on the De Bruijn index.

Functions defined on terms of other functions: recurrent clustering process.

Recursive and mutually-recursive function occurrences have a fixed value.

J. Heras ACL2(ml): Machine-Learning for ACL2 12/23

Statistical Pattern Recognition with ACL2(ml)

Demo

Finding similar theorems across libraries.

Obtaining more precise clusters.

Finding similar definitions across libraries.

J. Heras ACL2(ml): Machine-Learning for ACL2 13/23

Symbolic methods in ACL2(ml)

Outline

1 Some Challenges in ACL2

2 An overview of ACL2(ml)

3 Statistical Pattern Recognition with ACL2(ml)

4 Symbolic methods in ACL2(ml)

5 Conclusions

J. Heras ACL2(ml): Machine-Learning for ACL2 14/23

Symbolic methods in ACL2(ml)

Lemma analogy in ACL2(ml)∗

Can we use the output of the statistical side of ACL2(ml) to generate useful lemmas?

Terminology:

Target Theorem (TT): the theorem that we want to prove.

Source Theorem (ST): theorem suggested as similar to TT.

Source Lemma (SL): a user-supplied lemma to prove ST.

∗Joint work with E. Maclean and M. Johansson

J. Heras ACL2(ml): Machine-Learning for ACL2 15/23

Symbolic methods in ACL2(ml)

Lemma analogy in ACL2(ml)∗

Can we use the output of the statistical side of ACL2(ml) to generate useful lemmas?
Terminology:

Target Theorem (TT): the theorem that we want to prove.

Source Theorem (ST): theorem suggested as similar to TT.

Source Lemma (SL): a user-supplied lemma to prove ST.

∗Joint work with E. Maclean and M. Johansson

J. Heras ACL2(ml): Machine-Learning for ACL2 15/23

Symbolic methods in ACL2(ml)

Lemma analogy in ACL2(ml)∗

Can we use the output of the statistical side of ACL2(ml) to generate useful lemmas?
Terminology:

Target Theorem (TT): the theorem that we want to prove.

Source Theorem (ST): theorem suggested as similar to TT.

Source Lemma (SL): a user-supplied lemma to prove ST.

∗Joint work with E. Maclean and M. Johansson

J. Heras ACL2(ml): Machine-Learning for ACL2 15/23

Symbolic methods in ACL2(ml)

Overview of the process

J. Heras ACL2(ml): Machine-Learning for ACL2 16/23

Symbolic methods in ACL2(ml)

Using guards to generate preconditions

Using the lemma analogy tool, ACL2(ml) generates the following suggestion:

(equal (helper_fib n j k)

(+ (* (theta_fib (- n 1)) j) (* (theta_fib n) k))))

This result cannot be directly proven in ACL2, we need some preconditions.

In ACL2, we can restrict a function to a particular domain using the guard
mechanism.

Guards are optional and several functions do not include them.

ACL2 recommendation for novices: “novices are often best served by avoiding
guards”.

Solution: compute recursively the guards of a function f .

J. Heras ACL2(ml): Machine-Learning for ACL2 17/23

Symbolic methods in ACL2(ml)

Using guards to generate preconditions

Using the lemma analogy tool, ACL2(ml) generates the following suggestion:

(equal (helper_fib n j k)

(+ (* (theta_fib (- n 1)) j) (* (theta_fib n) k))))

This result cannot be directly proven in ACL2, we need some preconditions.

In ACL2, we can restrict a function to a particular domain using the guard
mechanism.

Guards are optional and several functions do not include them.

ACL2 recommendation for novices: “novices are often best served by avoiding
guards”.

Solution: compute recursively the guards of a function f .

J. Heras ACL2(ml): Machine-Learning for ACL2 17/23

Symbolic methods in ACL2(ml)

Using guards to generate preconditions

Using the lemma analogy tool, ACL2(ml) generates the following suggestion:

(equal (helper_fib n j k)

(+ (* (theta_fib (- n 1)) j) (* (theta_fib n) k))))

This result cannot be directly proven in ACL2, we need some preconditions.

In ACL2, we can restrict a function to a particular domain using the guard
mechanism.

Guards are optional and several functions do not include them.

ACL2 recommendation for novices: “novices are often best served by avoiding
guards”.

Solution: compute recursively the guards of a function f .

J. Heras ACL2(ml): Machine-Learning for ACL2 17/23

Symbolic methods in ACL2(ml)

Using guards to generate preconditions

Using the lemma analogy tool, ACL2(ml) generates the following suggestion:

(equal (helper_fib n j k)

(+ (* (theta_fib (- n 1)) j) (* (theta_fib n) k))))

This result cannot be directly proven in ACL2, we need some preconditions.

In ACL2, we can restrict a function to a particular domain using the guard
mechanism.

Guards are optional and several functions do not include them.

ACL2 recommendation for novices: “novices are often best served by avoiding
guards”.

Solution: compute recursively the guards of a function f .

J. Heras ACL2(ml): Machine-Learning for ACL2 17/23

Symbolic methods in ACL2(ml)

Using guards to generate preconditions

Using the lemma analogy tool, ACL2(ml) generates the following suggestion:

(equal (helper_fib n j k)

(+ (* (theta_fib (- n 1)) j) (* (theta_fib n) k))))

This result cannot be directly proven in ACL2, we need some preconditions.

In ACL2, we can restrict a function to a particular domain using the guard
mechanism.

Guards are optional and several functions do not include them.

ACL2 recommendation for novices: “novices are often best served by avoiding
guards”.

Solution: compute recursively the guards of a function f .

J. Heras ACL2(ml): Machine-Learning for ACL2 17/23

Symbolic methods in ACL2(ml)

Using guards to generate preconditions

(defun helper_fib (n j k)

(if (zp n) j (if (equal n 1) k (helper_fib (- n 1) k (+ j k)))))

* zp -> (natp x)

* equal -> t

* + -> (and (acl2-numberp x) (acl2-numberp y))

* - -> (and (acl2-numberp x) (acl2-numberp y))

Guards generated for helper_fib →

(and (natp n) t (and (acl2-numberp n) (acl2-numberp 1))

(and (acl2-numberp j) (acl2-numberp k)))

simpl−−−→ (and (integerp n) (not (< n 0)) (acl2-numberp j) (acl2-numberp k))

(defthm helper_fib_theta_fib

(equal (helper_fib n j k)

(+ (* (theta_fib (- n 1)) j) (* (theta_fib n) k))))

Guards:

(and (integerp n) (not (< n 0)) (acl2-numberp j) (acl2-numberp k)

(not (< (+ -1 n) 0)))

J. Heras ACL2(ml): Machine-Learning for ACL2 18/23

Symbolic methods in ACL2(ml)

Using guards to generate preconditions

(defun helper_fib (n j k)

(if (zp n) j (if (equal n 1) k (helper_fib (- n 1) k (+ j k)))))

* zp -> (natp x)

* equal -> t

* + -> (and (acl2-numberp x) (acl2-numberp y))

* - -> (and (acl2-numberp x) (acl2-numberp y))

Guards generated for helper_fib →

(and (natp n) t (and (acl2-numberp n) (acl2-numberp 1))

(and (acl2-numberp j) (acl2-numberp k)))

simpl−−−→ (and (integerp n) (not (< n 0)) (acl2-numberp j) (acl2-numberp k))

(defthm helper_fib_theta_fib

(equal (helper_fib n j k)

(+ (* (theta_fib (- n 1)) j) (* (theta_fib n) k))))

Guards:

(and (integerp n) (not (< n 0)) (acl2-numberp j) (acl2-numberp k)

(not (< (+ -1 n) 0)))

J. Heras ACL2(ml): Machine-Learning for ACL2 18/23

Symbolic methods in ACL2(ml)

Using guards to generate preconditions

(defun helper_fib (n j k)

(if (zp n) j (if (equal n 1) k (helper_fib (- n 1) k (+ j k)))))

* zp -> (natp x)

* equal -> t

* + -> (and (acl2-numberp x) (acl2-numberp y))

* - -> (and (acl2-numberp x) (acl2-numberp y))

Guards generated for helper_fib →

(and (natp n) t (and (acl2-numberp n) (acl2-numberp 1))

(and (acl2-numberp j) (acl2-numberp k)))

simpl−−−→ (and (integerp n) (not (< n 0)) (acl2-numberp j) (acl2-numberp k))

(defthm helper_fib_theta_fib

(equal (helper_fib n j k)

(+ (* (theta_fib (- n 1)) j) (* (theta_fib n) k))))

Guards:

(and (integerp n) (not (< n 0)) (acl2-numberp j) (acl2-numberp k)

(not (< (+ -1 n) 0)))

J. Heras ACL2(ml): Machine-Learning for ACL2 18/23

Symbolic methods in ACL2(ml)

Demo

Lemma discovery.

Guard generation.

J. Heras ACL2(ml): Machine-Learning for ACL2 19/23

Conclusions

Outline

1 Some Challenges in ACL2

2 An overview of ACL2(ml)

3 Statistical Pattern Recognition with ACL2(ml)

4 Symbolic methods in ACL2(ml)

5 Conclusions

J. Heras ACL2(ml): Machine-Learning for ACL2 20/23

Conclusions

Benefits of ACL2(ml)

ACL2(ml) statistical and symbolic tools can be switched on/off on user’s
demand;

ACL2(ml) does not assume any knowledge of machine-learning from the user;

modular: allows the user to make choices regarding approach to levels of proofs
and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different notation
used in proofs across different users.

Conclusions

ACL2(ml) combines statistical machine learning (detection of patterns) with
symbolic techniques (generation of lemmas).

ACL2(ml) is different to other tools:

its methods of generating the proof-hints interactively and in real-time;

its flexible environment for integration of statistical and symbolic

techniques.

J. Heras ACL2(ml): Machine-Learning for ACL2 21/23

Conclusions

Benefits of ACL2(ml)

ACL2(ml) statistical and symbolic tools can be switched on/off on user’s
demand;

ACL2(ml) does not assume any knowledge of machine-learning from the user;

modular: allows the user to make choices regarding approach to levels of proofs
and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different notation
used in proofs across different users.

Conclusions

ACL2(ml) combines statistical machine learning (detection of patterns) with
symbolic techniques (generation of lemmas).

ACL2(ml) is different to other tools:

its methods of generating the proof-hints interactively and in real-time;

its flexible environment for integration of statistical and symbolic

techniques.

J. Heras ACL2(ml): Machine-Learning for ACL2 21/23

Conclusions

Benefits of ACL2(ml)

ACL2(ml) statistical and symbolic tools can be switched on/off on user’s
demand;

ACL2(ml) does not assume any knowledge of machine-learning from the user;

modular: allows the user to make choices regarding approach to levels of proofs
and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different notation
used in proofs across different users.

Conclusions

ACL2(ml) combines statistical machine learning (detection of patterns) with
symbolic techniques (generation of lemmas).

ACL2(ml) is different to other tools:

its methods of generating the proof-hints interactively and in real-time;

its flexible environment for integration of statistical and symbolic

techniques.

J. Heras ACL2(ml): Machine-Learning for ACL2 21/23

Conclusions

Benefits of ACL2(ml)

ACL2(ml) statistical and symbolic tools can be switched on/off on user’s
demand;

ACL2(ml) does not assume any knowledge of machine-learning from the user;

modular: allows the user to make choices regarding approach to levels of proofs
and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different notation
used in proofs across different users.

Conclusions

ACL2(ml) combines statistical machine learning (detection of patterns) with
symbolic techniques (generation of lemmas).

ACL2(ml) is different to other tools:

its methods of generating the proof-hints interactively and in real-time;

its flexible environment for integration of statistical and symbolic

techniques.

J. Heras ACL2(ml): Machine-Learning for ACL2 21/23

Conclusions

Benefits of ACL2(ml)

ACL2(ml) statistical and symbolic tools can be switched on/off on user’s
demand;

ACL2(ml) does not assume any knowledge of machine-learning from the user;

modular: allows the user to make choices regarding approach to levels of proofs
and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different notation
used in proofs across different users.

Conclusions

ACL2(ml) combines statistical machine learning (detection of patterns) with
symbolic techniques (generation of lemmas).

ACL2(ml) is different to other tools:

its methods of generating the proof-hints interactively and in real-time;

its flexible environment for integration of statistical and symbolic

techniques.

J. Heras ACL2(ml): Machine-Learning for ACL2 21/23

Conclusions

Further work

Reimplement ACL2(ml) as ACL2 book. All ACL2(ml) modules are currently
implemented in Emacs Lisp.

Use of information generated by failed proof-attempts.

Different patterns. Statistical ACL2(ml) groups in the same clusters theorems
whose lemmas cannot be mutated to generate any useful lemma.

Smaller lemmas. The lemma analogy tool currently only adds term structure;
therefore, it cannot generate smaller lemmas.

Conditional lemmas. Discovering appropriate conditions for generated lemmas
is a difficult problem for theory exploration systems.

New definitions. Another big challenge in lemma discovery is the invention of
new concepts.

J. Heras ACL2(ml): Machine-Learning for ACL2 22/23

Thank you for your attention Questions?

ACL2(ml): Machine-Learning for ACL2

J. Heras and E. Komendantskaya

http://staff.computing.dundee.ac.uk/katya/acl2ml/

12 July 2014
ACL2’14

J. Heras ACL2(ml): Machine-Learning for ACL2 23/23

http://staff.computing.dundee.ac.uk/katya/acl2ml/

How is the function [.] defined?

How is the function [.] defined?

Definition (Function [.])

Given the nth term definition of the library (call the term t), a function [.] is
inductively defined for every symbol s in t as follows:
− [s] = i , if s is the ith distinct variable in t (formulas are implicitly universally
quantified);
− [s] = −[m], if t is a recursive definition defining the function s with measure
function m;
− [s] = k , if s is a function imported from CLISP; and [s] = k in the figure below;
− [s] = 5 + 2× j + p, where Cj is a cluster obtained as a result of definition clustering
with granularity 3 for library definitions 1 to n − 1, s ∈ Cj and p is the proximity value
of s in Cj .

∗ Type recognisers (r = {symbolp, characterp, stringp, consp, acl2-numberp, integerp, rationalp,

complex-rationalp}): [ri] = 1 +
∑i

j=1
1

10×2j−1 (where ri is the ith element of r).

∗ Constructors (c = {cons, complex}): [ci] = 2 +
∑i

j=1
1

10×2j−1 .

∗ Accessors (a1 = {car, cdr}, a2 = {denominator, numerator}, a3 = {realpart, imagpart}):

[a
j
i] = 3 + 1

10×j
+ i−1

100
.

∗ Operations on numbers (o = {unary-/, unary–, binary-+, binary-*}): [oi] = 4 +
∑i

j=1
1

10×2j−1 .

∗ Integers and rational numbers: [0] = 4.3, [n] = 4.3 +
|n|
10

(with n 6= 0 and |n| < 1) and [n] = 4.3 + 1
100∗|n|

(with n 6= 0 and |n| ≥ 1).

∗ Boolean operations (b = {equal, if, ¡}): [bi] = 5 +
∑i

j=1
1

10×2j−1 .J. Heras ACL2(ml): Machine-Learning for ACL2 1/6

Analogy mapping

Definition (Analogy Mapping A)

For all symbols s1, . . . , sn occurring in the current ST, the set of admissible analogy
mappings is the set of all mappings A such that
- A(si) = si for all shared background symbols; otherwise:
- A(si) = sj for all combinations of i , j ∈ 1 . . . n, such that si and sj belong to the
same cluster in the last iteration of definition clustering.

Example

For our running example, the shared background theory includes symbols {+, *,-, 1,
0}. We thus get a mapping:
A = {fact 7→ fib, helper-fact 7→ helper-fib, + 7→ +, 1 7→ 1,...}

J. Heras ACL2(ml): Machine-Learning for ACL2 2/6

Analogy mapping

Definition (Analogy Mapping A)

For all symbols s1, . . . , sn occurring in the current ST, the set of admissible analogy
mappings is the set of all mappings A such that
- A(si) = si for all shared background symbols; otherwise:
- A(si) = sj for all combinations of i , j ∈ 1 . . . n, such that si and sj belong to the
same cluster in the last iteration of definition clustering.

Example

For our running example, the shared background theory includes symbols {+, *,-, 1,
0}. We thus get a mapping:
A = {fact 7→ fib, helper-fact 7→ helper-fib, + 7→ +, 1 7→ 1,...}

J. Heras ACL2(ml): Machine-Learning for ACL2 2/6

Term tree mutation

Term tree mutation consists of three iterations:

Tree reconstruction.

Node expansion.

Term tree expansion.

J. Heras ACL2(ml): Machine-Learning for ACL2 3/6

Tree reconstruction

Tree Reconstruction phase replaces symbols in the SL with their analogical

counterparts.

equal

helper-fact *

n a fact

n

a

equal

helper-fib *

n n1 a fib

n1

a

J. Heras ACL2(ml): Machine-Learning for ACL2 4/6

Tree reconstruction

Tree Reconstruction phase replaces symbols in the SL with their analogical

counterparts.

equal

helper-fact *

n a fact

n

a

equal

helper-fib *

n n1 a fib

n1

a

J. Heras ACL2(ml): Machine-Learning for ACL2 4/6

Node expansion

Node expansion phase mutates the term, by synthesising small terms (max depth 2) in

place of variables.

equal

helper-fib *

n n1 a fib

n1

a

equal

helper-fib *

n n1 a fib

-

n 1

a

J. Heras ACL2(ml): Machine-Learning for ACL2 5/6

Node expansion

Node expansion phase mutates the term, by synthesising small terms (max depth 2) in

place of variables.

equal

helper-fib *

n n1 a fib

n1

a

equal

helper-fib *

n n1 a fib

-

n 1

a

J. Heras ACL2(ml): Machine-Learning for ACL2 5/6

Term Tree Expansion

Term Tree Expansion phase is similar to Node expansion phase, but adding new term

structure on the top-level of the term.

equal

helper-fib *

n n1 a fib

-

n 1

a

equal

helper-fib +

n n1 a * *

fib

-

n1 1

n a fib

n1

J. Heras ACL2(ml): Machine-Learning for ACL2 6/6

Term Tree Expansion

Term Tree Expansion phase is similar to Node expansion phase, but adding new term

structure on the top-level of the term.

equal

helper-fib *

n n1 a fib

-

n 1

a

equal

helper-fib +

n n1 a * *

fib

-

n1 1

n a fib

n1

J. Heras ACL2(ml): Machine-Learning for ACL2 6/6

	Some Challenges in ACL2
	An overview of ACL2(ml)
	Statistical Pattern Recognition with ACL2(ml)
	Symbolic methods in ACL2(ml)
	Conclusions
	Appendix

